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INTRODUCTION
Molecular biology techniques have revolutionised biomedical 
research and clinical practice by enabling the detailed examination of 
genetic information and cellular processes. These methods include 
DNA sequencing, gene expression analysis, gene cloning, genetic 
manipulation and recombinant protein production [1]. Clinically, 
molecular diagnostics employ in situ hybridisation, Southern 
blot analysis and Polymerase Chain Reaction (PCR) for disease 
diagnosis and monitoring [2]. Since the 1980s, molecular pathology 
has evolved from single-gene evaluations to comprehensive analysis 
of exomes and genomes in complex genetic disorders [3]. This shift 
has accelerated the identification of mutations that cause genetic 
diseases and cancers. Consequently, these molecular techniques 
offer new opportunities for diagnosis, staging, prognosis and 
treatment across medical specialties, including orthopaedics and 
microbiology [1,4]. These advancements have enabled personalised 
treatment strategies based on genetic profiles and are expected 
to significantly influence both surgical and non surgical decisions 
[1]. The use of real-time PCR in hospitals is gradual and region-
dependent, leading to its implementation in the United Kingdom. 
Some reference centres in developed countries have yet to adopt it, 
whereas in developing nations, targeted applications for complex or 
urgent issues are under consideration [5].

In epidemiology and surveillance, molecular approaches have 
advanced more rapidly than in clinical use and are recognised 

for their superior discrimination [6]. The WGS also shows high 
discriminatory capabilities but faces adoption barriers [7,8]. 
Bioinformatics and phylogenetic analysis are complex and often 
require culturing due to the increased complexity and cost of 
direct sampling. However, sequencing from cultures is becoming 
more cost-effective. Applications vary among microorganisms. 
Advancements in TB have led to the replacement of cultures in 
some countries [9]. Implementation for other bacteria, particularly 
those causing less common diseases with unknown resistance 
genetics or involving consortia of pathogens, remains unestablished. 
This review aimed to provide details on clinical and epidemiological 
applications in various bacterial and viral diseases and to discuss 
future prospects.

Methodology
A comprehensive literature review using PubMed, Scopus and Web 
of Science was conducted on molecular diagnostics, particularly 
WGS, in clinical microbiology, epidemiology, antibiotic resistance 
and infectious disease management, from January 2002 to 
December 2024. Peer-reviewed studies, reviews and reports 
meeting the inclusion criteria were analysed, whereas unrelated 
research, non English publications, and studies lacking primary 
or secondary data were excluded. Information was extracted 
from the WGS applications to identify antibiotic resistance and 
TB, NGS for detecting viral pathogens, metagenomics in disease 
surveillance and outbreak investigations and global challenges 
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ABSTRACT
Molecular biology techniques have revolutionised biomedical research and clinical practice, enabling the detailed examination of 
genetic information and cellular processes. In epidemiology and surveillance, molecular approaches have advanced more rapidly 
than in clinical use and are recognised for their superior discrimination. This review aimed to provide details on the clinical and 
epidemiological applications of molecular diagnostics, particularly Whole Genome Sequencing (WGS), in various bacterial and 
viral diseases and to discuss its future prospects. A comprehensive literature review was conducted using PubMed, Scopus 
and the Web of Science from January 2002 to December 2024. This review found that WGS offers advantages for antibiotic 
resistance surveillance and can be used as a standard to evaluate antibiotic susceptibility in pathogenic bacteria. In Tuberculosis 
(TB), WGS has transformed molecular epidemiology and effectively identifies transmission clusters. Next Generation Sequencing 
(NGS) exceeds traditional methods for detecting viral pathogens, including novel ones, and outperforms Sanger sequencing 
for detecting low-frequency antiviral resistance mutations. Metagenomics identifies all potential pathogens in a single test 
using NGS of DNA, surpassing traditional diagnostics. NGS provides a methodological foundation for investigating bacterial 
transmission in forensic microbiology. The implementation of WGS in clinical and epidemiological settings remains inconsistent, 
with varying applications across countries and contexts. Although WGS offers advancements in fastidious microbes, plasmid-
mediated resistance detection, and comprehensive characterisation, its routine use depends on overcoming challenges, targeting 
diseases and demonstrating benefits. Challenges such as a lack of standardisation in bioinformatics analysis, incomplete mutation 
catalogs and technical complexities hinder its routine use. However, advancements in mutation catalogs and the optimised use 
of WGS may enable comprehensive and accurate diagnosis, leading to personalised treatment strategies. A significant shift is 
expected in developed countries within five years, driven by global sample preparation and result analysis approaches. Developing 
countries face challenges that complicate their efforts, while developed nations have made progress. Future improvements in 
mutation catalogs and the optimised use of WGS may enable comprehensive and accurate diagnosis, leading to personalised 
treatment strategies.
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mutations [27-29]. Future improvements in mutation catalogs 
and the optimised use of WGS may enable comprehensive and 
accurate diagnosis, leading to personalised treatment for patients 
with multidrug-resistant and extensively drug-resistant TB [30].

Viral Pathology
The NGS exceeds traditional methods for detecting viral pathogens, 
including novel ones, in samples lacking prior genomic information. 
Analysing the viral components of the microbiota is technically 
challenging, complicating virus identification in complex samples 
and distinguishing colonisation from infection [31]. Addressing 
viral contaminants in materials and reagents is therefore critical 
[32]. Despite these challenges, NGS has identified pathogens 
such as rubella virus in cases of ophthalmitis and mumps virus in 
cerebrospinal fluid from patients where conventional methods failed 
[33,34].

Studies have shown that NGS outperforms Sanger sequencing 
in detecting low-frequency antiviral resistance mutations [35]. 
Primarily used for HIV, it is also employed for Hepatitis C, 
cytomegalovirus, hepatitis B, hepatitis A and influenza viruses 
[36-41]. Current HIV resistance guidelines exclude the routine 
identification of minority mutations [42], limiting its use to 
research, although it may be considered for non nucleoside 
reverse transcriptase inhibitors. Limited data on treatment failure 
correlation restrict frequent testing; however, the transmission 
potential is significant [43,44].

RNA viruses that cause persistent infections, such as HIV and 
Hepatitis C virus, exhibit high mutation rates, revealing the viral 
population dynamics over time [45,46]. Compartmentalisation, 
mutations, and varying drug accessibility can lead to treatment 
failures [45,46]. The ability of NGS to analyse viral populations over 
time is advantageous, revealing that co-infection or superinfection 
is linked to high-risk behaviours [47]. This method also aids in the 
study of viral transmission among patients, although conclusions 
drawn from sequence analysis alone, without supplementary clinical 
or epidemiological data, can be challenging [48].

NGS data have meticulously analysed transmission networks 
and viral epidemics in epidemiological and forensic contexts, 
as demonstrated by real-time assessments of Ebola, Zika and 
chikungunya outbreaks using third-generation sequencing [49-51]. 
However, identifying viral transmission between specific individuals 
and their directionality based solely on sequencing data should 
be approached cautiously because of conflicting findings and 
methodological concerns.

Nosocomial Infections
WGS is an advanced epidemiological investigation method [52]. A 
hospital faced a potential outbreak, necessitating verification due to 
the high mortality among patients and probable links to underlying 
conditions. Of the estimated 20 potential cases, only 12 samples 
from 6 patients were analysed. Genomic Sequencing (GS) and 
phylogenetic analysis confirmed that all cases were of the same 
isolate type, with minor genome-wide variations. MLST identified 
it as ST175, a common global sequence type, complicating 
conclusions about a single origin based on these data alone [53]. 
Multiple samples per patient are crucial for assessing infections 
caused by different clones.

Whole-genome phylogenetic analysis of complex cases confirmed 
outbreaks, identified affected individuals, assessed the scope 
and determined infection sources. For instance, a major epidemic 
in a hospital affected 64 individuals. With increasing rates of 
Pseudomonas aeruginosa infection, samples from different wards 
were examined. This approach confirmed the spread of the outbreak 
and revealed a more complex evolutionary structure than a single 
outbreak, indicating the presence of minor epidemics.

and opportunities for adopting WGS. Data were categorised into 
thematic areas, emphasising the impact of molecular technology 
on clinical diagnosis and epidemiology, focusing on established 
applications, benefits and implementation challenges.

Role in Clinical Diagnosis 
Antibiotic-resistant microorganisms pose a significant threat to 
global health [10]. Currently, some microorganisms are resistant 
to all available antibiotics, causing an estimated 700,000 deaths 
annually, and this number is expected to rise to over 10 million 
by 2050, surpassing those of cancer and heart disease [11]. 
Antibiotic resistance is encoded by point mutations in chromosomes, 
plasmids and other mobile genetic elements, including all genes. 
Bacteria exhibit varied resistance patterns with distinct  clinical 
implications, prompting organisations such as the European Centre 
for Disease Prevention and Control, World Health Organisation 
(WHO) and Centers for Disease Control and Prevention (CDC) to 
list diseases and resistance types that require strict monitoring 
[12,13].

The NGS offers several advantages for surveillance. It can be used 
as a standard to evaluate antibiotic susceptibility in pathogenic 
bacteria  [14]. A significant challenge in clinical implementation is 
the need for rapid bioinformatics analysis. Tools such as SRST2 
and ARIBA address this issue by providing detailed characterisation 
of isolates and resistance without extensive bioinformatics 
expertise,  yielding information on species, Multi-Locus Sequence 
Types (MLST), and resistance genes soon after sequencing 
[15,16].

The integration of Genomic Sequencing (GS) into clinical microbiology 
laboratories is facilitated by its dual relevance in clinical practice and 
epidemiology. Training, equipment acquisition and familiarisation 
with the procedures are essential for surveillance purposes.

Bacterial Pathology 
Tuberculosis (TB), the leading global infectious disease, accounts 
for approximately 10 million new cases and 1.8 million fatalities 
annually, as reported by the WHO [17,18]. Coronavirus Disease-
2019 (COVID-19) pandemic has significantly hindered access to 
TB diagnosis and treatment by 2021 [19,20]. That year, global TB 
infections rose by 4.5 percent to 10.6 million, resulting in 1.6 million 
deaths, of which 187,000 were Human Immunodeficiency Virus 
(HIV)-positive individuals, effectively negating progress in reducing 
TB mortality worldwide [21]. Mycobacterium tuberculosis acquires 
resistance through point mutations. The WGS demonstrated 
comparable or superior sensitivity and specificity to culture methods 
for detecting rifampicin and isoniazid resistance, though results for 
other antibiotics varied. Since 2017, some public health facilities 
have replaced phenotypic testing with WGS for Mycobacterium 
tuberculosis complex diagnosis and resistance profiling [9].

WGS has transformed the molecular epidemiology of TB [22]. It 
effectively identifies transmission clusters and parallels conventional 
typing methods. Wyllie DH et al., and Stucki D et al., found that 
the Mycobacterial Interspersed Repetitive Unit-Variable Number 
Tandem Repeat technique overestimates recent United Kingdom 
transmissions, particularly among immigrants [23,24]. WGS aligns 
better with epidemiological studies and can detect transmission 
across countries [25].

However, WGS faces challenges such as a lack of standardisation 
in bioinformatics analysis and incomplete mutation catalogs, with 
rare variants remaining problematic [26]. Databases such as the 
Comprehensive Analysis Server for the Mycobacterium tuberculosis 
complex, TB Profiler, and PhyReSE catalog known mutations and 
enable automated sequence analysis, whereas consortia such as 
the Comprehensive Resistance Prediction for TB: an International 
Consortium and ReSeqTB advance the discovery of new diagnostic 
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Metagenomics in Clinical Diagnosis and Disease 
Monitoring
Metagenomics identifies all potential pathogens in a single test 
through NGS of DNA, thereby surpassing traditional diagnostics. 
Neuroleptospirosis was successfully diagnosed in a critically ill 
patient, leading to effective treatment and recovery [54].

Metagenomics can be used to identify specific strains, mutations, 
resistance genes and virulence factors. It has been utilised to study 
bacterial outbreaks, trace origins and transmission and characterise 
microbiomes in various human organs and tissues linked to acute 
and chronic conditions [55,56]. Dysbiosis is associated with diseases 
such as diabetes, Crohn’s disease and Alzheimer’s disease [57,58]. 
Metagenomics aids in the management and monitoring of these 
disorders, as demonstrated by its use in treating Clostridium difficile 
infections via fecal transplantation [59].

Currently, metagenomics is too complex and expensive for routine 
clinical practice. Most studies have been conducted in research 
settings with evolving methodologies, hindering their adoption in 
public health systems that require validation. As technical challenges 
are resolved and clinical applications expand, metagenomics is 
anticipated to replace many existing microbiological methods in the 
near future [60].

Role of Sequencing in Forensic Microbiology
Forensic microbiology gained prominence after the 2001 anthrax 
bioterrorist attack in the United States, in which NGS was used 
without modern GS [61,62]. NGS had not been applied to bacterial 
transmission in forensic microbiology until recently, owing to legal 
constraints or the novelty of the technology.

Researchers have conducted studies involving Neisseria 
gonorrhoeae transmission, where WGS is used for strains from the 
suspect, victim, and three local controls [63]. Traditional techniques 
such as MLST and pulsed-field gel electrophoresis lack sufficient 
discriminatory power [6]. MLST could not differentiate between 
the case and control strains, as all strains belonged to the same 
ST9363 strain. Although pulsed-field gel electrophoresis is typically 
more discriminatory than MLST, it also failed to distinguish between 
the case and control strains [6,63].

Francés-Cuesta C et al., used methods to align sequences with 
a genetically similar reference genome, confirming that strains 
from the suspect and victim were identical, while the control strain 
differed by two nucleotides [63]. The control patient had no known 
connection with the case individuals, suggesting a shared infection 
source for the control and suspect patients. Although GS does not 
determine the transmission route, detailed case information clarifies 
it. This pioneering use of NGS in forensic microbiology provides a 
methodological foundation for investigating bacterial transmission 
in a forensic context.

CONCLUSION(S)
The implementation of WGS in clinical and epidemiological settings 
remains inconsistent, with varying applications across countries 
and contexts, such as its systematic use in the United Kingdom, 
foodborne pathogen outbreaks, and differing adoption rates 
depending on the disease. Third-generation sequencers enable 
faster diagnosis by providing real-time genomic data from individual 
molecules, albeit at high error rates. WGS is valuable in surveillance, 
epidemiology and clinical microbiology; however, its routine use 
depends on overcoming challenges, targeting diseases and 
demonstrating benefits. While phenotypic or molecular methods 
can quickly identify some pathogens, WGS offers advancements in 
the detection of fastidious microbes, plasmid-mediated resistance, 
and comprehensive characterisation. A major shift is expected 
in developed countries within five years, driven by global sample 
preparation and result-analysis approaches. Despite their potential 

to address prevalent endemic diseases, developing countries face 
challenges that complicate efforts, while developed nations have 
made progress.
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